1,165 research outputs found

    Studies of polymers in fouling release coating science

    Get PDF
    In chapter one, we describe our studies of the solubility properties of two biocides in F127 aqueous solutions. One is zinc omadine and the other is C9211. The partition coefficients of these two biocides were also determined from the analytical results. In chapter two, we conducted phase related studies of a triblock copolymer, PEO400- PBO55-PEO400 in aqueous solution. The phase diagram features of PEO400-PBO55-PEO400 in water are compared with those of F127. We believe the lack of a lower gel to liquid transition boundary in this system is because of the relatively longer PEO segments relative to the PBO segment. In chapter three, we successfully prepared and characterized a polymerizable macromonomer, PEG-PS-DVB. A preliminary application of the polymer was investigated and nanoparticles were prepared by microemulsion polymerization. According to the characterizations, the nanoparticles have crosslinked cores and could be used as “inorganic free” nanofluid. No apparent thermoreversible behaviors were observed for these nanoparticles in water

    Hybrid Radio-map for Noise Tolerant Wireless Indoor Localization

    Full text link
    In wireless networks, radio-map based locating techniques are commonly used to cope the complex fading feature of radio signal, in which a radio-map is built by calibrating received signal strength (RSS) signatures at training locations in the offline phase. However, in severe hostile environments, such as in ship cabins where severe shadowing, blocking and multi-path fading effects are posed by ubiquitous metallic architecture, even radio-map cannot capture the dynamics of RSS. In this paper, we introduced multiple feature radio-map location method for severely noisy environments. We proposed to add low variance signature into radio map. Since the low variance signatures are generally expensive to obtain, we focus on the scenario when the low variance signatures are sparse. We studied efficient construction of multi-feature radio-map in offline phase, and proposed feasible region narrowing down and particle based algorithm for online tracking. Simulation results show the remarkably performance improvement in terms of positioning accuracy and robustness against RSS noises than the traditional radio-map method.Comment: 6 pages, 11th IEEE International Conference on Networking, Sensing and Control, April 7-9, 2014, Miami, FL, US

    Stochastic path-integral approach for predicting the superconducting temperatures of anharmonic solids

    Full text link
    We develop a stochastic path-integral approach for predicting the superconducting transition temperatures of anharmonic solids. By defining generalized Bloch basis, we generalize the formalism of the stochastic path-integral approach, which is originally developed for liquid systems. We implement the formalism for ab initio calculations using the projector augmented-wave method, and apply the implementation to estimate the superconducting transition temperatures of metallic deuterium and hydrogen sulfide. For metallic deuterium, which is approximately harmonic, our result coincides well with that obtained from the standard approach based on the harmonic approximation and the density functional perturbation theory. For hydrogen sulfide, we find that anharmonicity strongly suppresses the predicted superconducting transition temperature. Compared to the self-consistent harmonic approximation approach, our approach yields a transition temperature closer to the experimentally observed one.Comment: 12 pages, 12 figures, 3 table

    Locality Preserving Projections for Grassmann manifold

    Full text link
    Learning on Grassmann manifold has become popular in many computer vision tasks, with the strong capability to extract discriminative information for imagesets and videos. However, such learning algorithms particularly on high-dimensional Grassmann manifold always involve with significantly high computational cost, which seriously limits the applicability of learning on Grassmann manifold in more wide areas. In this research, we propose an unsupervised dimensionality reduction algorithm on Grassmann manifold based on the Locality Preserving Projections (LPP) criterion. LPP is a commonly used dimensionality reduction algorithm for vector-valued data, aiming to preserve local structure of data in the dimension-reduced space. The strategy is to construct a mapping from higher dimensional Grassmann manifold into the one in a relative low-dimensional with more discriminative capability. The proposed method can be optimized as a basic eigenvalue problem. The performance of our proposed method is assessed on several classification and clustering tasks and the experimental results show its clear advantages over other Grassmann based algorithms.Comment: Accepted by IJCAI 201

    Unfolding-model-based visualization: theory, method and applications

    Get PDF
    Multidimensional unfolding methods are widely used for visualizing item response data. Such methods project respondents and items simultaneously onto a low-dimensional Euclidian space, in which respondents and items are represented by ideal points, with personperson, item-item, and person-item similarities being captured by the Euclidian distances between the points. In this paper, we study the visualization of multidimensional unfolding from a statistical perspective. We cast multidimensional unfolding into an estimation problem, where the respondent and item ideal points are treated as parameters to be estimated. An estimator is then proposed for the simultaneous estimation of these parameters. Asymptotic theory is provided for the recovery of the ideal points, shedding lights on the validity of model-based visualization. An alternating projected gradient descent algorithm is proposed for the parameter estimation. We provide two illustrative examples, one on users’ movie rating and the other on senate roll call voting

    A Non-Iterative Balancing Method for HVAC Duct System

    Get PDF
    Building Heating, Ventilation and Air Conditioning (HVAC) system maintain comfortable indoor environment by supplying processed air to each terminal precisely through duct system. Testing, Adjusting and Balancing (TAB) plays critical role in achieving desired air distribution. Traditional TAB method is inaccurate and inefficient due to its trail-and-error natural, which forces people to pay high but expect low. Recently, it has been proposed that non-iterative approach to TAB is promising to improve performance and reduce cost. In this paper, a novel non-iterative balancing method is developed and implemented for TAB engineers to adjust dampers systematically and efficiently. Different from other TAB methods, this method is based on modeling and optimization. The mathematical model for duct system is firstly developed from its components including fan, duct segments and dampers to predict flow rates and pressures in the duct system for any damper positions. To identify the parameters in the model, flow rate measurements are taken for each terminal on real system under different damper positions. With the obtained model, optimal damper positions that gives desired air distribution are calculated by minimizing a specific objective function. To facilitate the adjusting process in real duct system, a sequential tuning instructions are generated which can help engineers to adjust dampers to their proper position using flowmeter as indicators. In this sequential tuning process, each damper only adjusts once to reach balance. Because the pressure and airflow dynamics of the duct system has been modeled, the entire TAB procedure is deterministic and non-iterative. Simulations are performed to validate the effectiveness of this method in Matlab/Simulink environment. Comparison study with existing methods shows that the proposed TAB method significantly shorten the duration of process and reduces balancing error while using easily-accessible equipment like pressure sensor and flowmeter only. It can be expected that the TAB service contractor will apply this method for advanced duct system where accurate air distribution is strictly required

    A note on exploratory item factor analysis by singular value decomposition

    Get PDF
    We revisit a singular value decomposition (SVD) algorithm given in Chen et al. (Psychometrika 84:124–146, 2019b) for exploratory item factor analysis (IFA). This algorithm estimates a multidimensional IFA model by SVD and was used to obtain a starting point for joint maximum likelihood estimation in Chen et al. (2019b). Thanks to the analytic and computational properties of SVD, this algorithm guarantees a unique solution and has computational advantage over other exploratory IFA methods. Its computational advantage becomes significant when the numbers of respondents, items, and factors are all large. This algorithm can be viewed as a generalization of principal component analysis to binary data. In this note, we provide the statistical underpinning of the algorithm. In particular, we show its statistical consistency under the same double asymptotic setting as in Chen et al. (2019b). We also demonstrate how this algorithm provides a scree plot for investigating the number of factors and provide its asymptotic theory. Further extensions of the algorithm are discussed. Finally, simulation studies suggest that the algorithm has good finite sample performance

    Interpretation on Multi-modal Visual Fusion

    Full text link
    In this paper, we present an analytical framework and a novel metric to shed light on the interpretation of the multimodal vision community. Our approach involves measuring the proposed semantic variance and feature similarity across modalities and levels, and conducting semantic and quantitative analyses through comprehensive experiments. Specifically, we investigate the consistency and speciality of representations across modalities, evolution rules within each modality, and the collaboration logic used when optimizing a multi-modality model. Our studies reveal several important findings, such as the discrepancy in cross-modal features and the hybrid multi-modal cooperation rule, which highlights consistency and speciality simultaneously for complementary inference. Through our dissection and findings on multi-modal fusion, we facilitate a rethinking of the reasonability and necessity of popular multi-modal vision fusion strategies. Furthermore, our work lays the foundation for designing a trustworthy and universal multi-modal fusion model for a variety of tasks in the future.Comment: This version was under review since 2023/3/
    • …
    corecore